Cara Membuat Visualisasi Python Dashboard dengan Panel dan Hvplot

Tirana Fatyanosa
4 min readJan 8, 2023

--

1. Instalasi

Buat direktori khusus

mkdir dashboard_co2
cd dashboard_co2

Instal panel di base

Untuk membuat interaktif panel aplikasi di Jupyter Lab, panel harus diinstal di base conda environment.

conda install -c conda-forge panel

Buat dan aktivasi environment baru

conda create --name dashboard
conda activate dashboard

Install hvplot, Jupyterlab, dan Panel

conda install -c conda-forge hvplot jupyterlab

Buka Jupyterlab dan akses servernya di browser

jupyter lab --no

Buat Notebook baru

2. Coding di Jupyter Notebook

import pandas as pd
import numpy as np
import panel as pn
pn.extension('tabulator')

import hvplot.pandas
df = pd.read_csv('https://raw.githubusercontent.com/owid/co2-data/master/owid-co2-data.csv')
df
png
df.columns
Index(['country', 'year', 'iso_code', 'population', 'gdp', 'cement_co2',
'cement_co2_per_capita', 'co2', 'co2_growth_abs', 'co2_growth_prct',
'co2_including_luc', 'co2_including_luc_growth_abs',
'co2_including_luc_growth_prct', 'co2_including_luc_per_capita',
'co2_including_luc_per_gdp', 'co2_including_luc_per_unit_energy',
'co2_per_capita', 'co2_per_gdp', 'co2_per_unit_energy', 'coal_co2',
'coal_co2_per_capita', 'consumption_co2', 'consumption_co2_per_capita',
'consumption_co2_per_gdp', 'cumulative_cement_co2', 'cumulative_co2',
'cumulative_co2_including_luc', 'cumulative_coal_co2',
'cumulative_flaring_co2', 'cumulative_gas_co2', 'cumulative_luc_co2',
'cumulative_oil_co2', 'cumulative_other_co2', 'energy_per_capita',
'energy_per_gdp', 'flaring_co2', 'flaring_co2_per_capita', 'gas_co2',
'gas_co2_per_capita', 'ghg_excluding_lucf_per_capita', 'ghg_per_capita',
'land_use_change_co2', 'land_use_change_co2_per_capita', 'methane',
'methane_per_capita', 'nitrous_oxide', 'nitrous_oxide_per_capita',
'oil_co2', 'oil_co2_per_capita', 'other_co2_per_capita',
'other_industry_co2', 'primary_energy_consumption',
'share_global_cement_co2', 'share_global_co2',
'share_global_co2_including_luc', 'share_global_coal_co2',
'share_global_cumulative_cement_co2', 'share_global_cumulative_co2',
'share_global_cumulative_co2_including_luc',
'share_global_cumulative_coal_co2',
'share_global_cumulative_flaring_co2',
'share_global_cumulative_gas_co2', 'share_global_cumulative_luc_co2',
'share_global_cumulative_oil_co2', 'share_global_cumulative_other_co2',
'share_global_flaring_co2', 'share_global_gas_co2',
'share_global_luc_co2', 'share_global_oil_co2',
'share_global_other_co2', 'total_ghg', 'total_ghg_excluding_lucf',
'trade_co2', 'trade_co2_share'],
dtype='object')
df[df['country'] == 'World']
png

Data Preprocessing

# Isi data yang hilang dengan 0 (nol) dan buat kolom untuk GDP per capita
df = df.fillna(0)
df['gdp_per_capita'] = np.where(df['population']!= 0, df['gdp']/ df['population'], 0)
# Buat interaktif DataFrame Pipeline
idf = df.interactive()

Emisi CO2 sepanjang waktu berdasarkan benua

# Definisikan panel widget
year_slider = pn.widgets.IntSlider(name='Year slider', start=1750, end=2020, step=5, value=1850)
year_slider
# Radio button untuk perhitungan CO2
yaxis_co2 = pn.widgets.RadioButtonGroup(
name='Y axis',
options=['co2', 'co2_per_capita',],
button_type='success'
)
# Menghubungkan data pipeline dan widget yang telah dibuat
continents = ['World', 'Asia', 'Oceania', 'Europe', 'Africa', 'North America', 'South America', 'Antarctica']

co2_pipeline = (
idf[
(idf.year <= year_slider) &
(idf.country.isin(continents))
]
.groupby(['country', 'year'])[yaxis_co2].mean()
.to_frame()
.reset_index()
.sort_values(by='year')
.reset_index(drop=True)
)

co2_pipeline
co2_plot = co2_pipeline.hvplot(x = 'year', by='country', y=yaxis_co2,line_width=2, title="CO2 emission by continent")
co2_plot

Tabel emisi CO2 sepanjang waktu berdasarkan benua

co2_table = co2_pipeline.pipe(pn.widgets.Tabulator, pagination=’remote’, page_size = 10, sizing_mode=’stretch_width’) 
co2_table

CO2 vs GDP scatterplot

co2_vs_gdp_scatterplot_pipeline = (
idf[
(idf.year == year_slider) &
(~ (idf.country.isin(continents)))
]
.groupby(['country', 'year', 'gdp_per_capita'])['co2'].mean()
.to_frame()
.reset_index()
.sort_values(by='year')
.reset_index(drop=True)
)
co2_vs_gdp_scatterplot_pipeline
co2_vs_gdp_scatterplot = co2_vs_gdp_scatterplot_pipeline.hvplot(x='gdp_per_capita', 
y='co2',
by='country',
size=80, kind="scatter",
alpha=0.7,
legend=False,
height=500,
width=500)
co2_vs_gdp_scatterplot

Bar chart dengan sumber CO2 berdasarkan benua

yaxis_co2_source = pn.widgets.RadioButtonGroup(
name='Y axis',
options=['coal_co2', 'oil_co2', 'gas_co2'],
button_type='success'
)

continents_excl_world = ['Asia', 'Oceania', 'Europe', 'Africa', 'North America', 'South America', 'Antarctica']

co2_source_bar_pipeline = (
idf[
(idf.year == year_slider) &
(idf.country.isin(continents_excl_world))
]
.groupby(['year', 'country'])[yaxis_co2_source].sum()
.to_frame()
.reset_index()
.sort_values(by='year')
.reset_index(drop=True)
)
co2_source_bar_plot = co2_source_bar_pipeline.hvplot(kind='bar', 
x='country',
y=yaxis_co2_source,
title='CO2 source by continent')
co2_source_bar_plot

Pembuatan Dashboard

#Layout using Template
template = pn.template.FastListTemplate(
title='World CO2 emission dashboard',
sidebar=[pn.pane.Markdown("# CO2 Emissions and Climate Change"),
pn.pane.Markdown("#### Carbon dioxide emissions are the primary driver of global climate change. It’s widely recognised that to avoid the worst impacts of climate change, the world needs to urgently reduce emissions. But, how this responsibility is shared between regions, countries, and individuals has been an endless point of contention in international discussions."),
pn.pane.Markdown("## Settings"),
year_slider],
main=[pn.Row(pn.Column(yaxis_co2,
co2_plot.panel(width=700), margin=(0,25)),
co2_table.panel(width=500)),
pn.Row(pn.Column(co2_vs_gdp_scatterplot.panel(width=600), margin=(0,25)),
pn.Column(yaxis_co2_source, co2_source_bar_plot.panel(width=600)))],
accent_base_color="#88d8b0",
header_background="#88d8b0",
)
# template.show()
template.servable();

File .ipynb dapat diakses di link berikut.

3. Hasil Dashboard

Buka terminal di Jupyter Notebook

Aktifkan environment dan jalankan panel dari file ipynb yang telah dibuat.

conda activate dashboard
panel serve dashboard_co2.ipynb

Buka aplikasi di browser.

Hasil aplikasi panel dapat dilihat di link berikut.

Jika ingin dipublikasikan di GitHub, silahkan ikuti tutorial berikut.

Source:

Sign up to discover human stories that deepen your understanding of the world.

Membership

Read member-only stories

Support writers you read most

Earn money for your writing

Listen to audio narrations

Read offline with the Medium app

--

--

No responses yet

Write a response